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The one-dimensional  problem of nonlinear heat conduction in a mult i layered sys tem is consi -  
dered taking account of mass  entrainment.  In the general  case ,  the rate of mass  entrainment  
is assumed an a rb i t r a ry  function of the t ime, the tempera ture ,  the heat flux, and the coord i -  
nates of the moving boundaries of the system. 

1.  F o r m u l a t i o n  o f  t h e  P r o b l e m  

The tempera ture  distribution in the layers  xj_ 1 < x < xj of a mult i layer sys tem is descr ibed by the 
equations 

cjpj OTj c~ (~.j OT i 1, 
ot = o--~ - ~ x  / t E (t,,, t~l, 1 -4 ] .< n (1) 

with the boundary conditions 

the conditions of discontinuous T and DT/Ox at the points xj 

F!Z)l i t, T ( x , ~ ) ,  ~xC)T (xj_____)l=O ' i =  I, 2; 1 4 1 - ~ n - - 1  

and the initial distribution 

(2) 

(3) 

Tj(t o, x )=T~(x) ,  l ~ ] ~ n .  (4) 

It is assumed that the dynamics of mass  entrainment  (accretion) on the outer surface of the layer  
Xn_ t < x < x n is descr ibed by a differential  equation of the form 

dx~ = o) [t, x~, T(x~), ~ ( x ~ ) ]  (5) 
dt 

with the initial condition 

x~(to) = x ~ 
�9 n 

In par t icular ,  (5) descr ibes  the motion of the boundary x = xn(t) in p rocesses  on the surface such as 
sublimation, condensation, mass  entrainment  during mechanical  t rea tment ,  etc. Equations (1) and (5), 
together  with conditions (2)-(4) and (6), completely determine the temperature  in the layers  and the value 
of xn(t) for t > t 0. The boundary conditions (2) and the condition of thermal  contact of the layers  (3) are  
nonlinear in the general  case ,  the thermophysica l  proper t ies  of the layer  mater ia l  (c, P, X) can depend on 
x and T. The dependence of c and X on T can exer t  considerable influence on the tempera ture  distribution 
in the neighborhood of the point Xn(t). 

It is convenient to reduce the problem under considerat ion to a problem with fixed boundaries by int ro-  
ducing the new independent variable 
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for  points of the outer  layer .  

x,, (t) - -  x,~_~ 

specif ic  heat ,  densi ty ,  and heat conductivity,  r e spec t ive ly .  
v a r i a b l e s  

OuJ_~Ot = Q~') O~u~O~ ~ + Q}~)' t ~ (to, t d ,  

where  

Let  us also introduce d imens ion less  va r i ab l e s  by means  of the fo rmulas  

T3 = u F , ,  x :  ~.r,, x -:  ~cx,, t = t [ , ,  cj :- ~)jc,, ,oj == yjp,, ~j = k])~,. 

Here  T , ,  x , ,  t , ,  c , ,  ~.  and X, are  the c h a r a c t e r i s t i c  d imensions  of the t e m p e r a t u r e ,  length, t ime,  
The re la t ionships  (1)-(6) become in the new 

Ou .~ 

d~d---nn = ~ ~, n, ~ (~), -~- G)  , 

uj(to, ~) = uo (~), ~ (~o) = ~,,. 
I 

The coefficient~ o t !  ) Q~2)are defined by the equalities 

v;6j ?j6j Ouj o~ + 7-~ o~-' 

v.6  o. 

~C(~j_I,  ~j), l . ~ ] . ~ n ,  

~ G), -g~ G), -d = o, 

I .<.]. .<n-1,  

1 S . ] ~ n - - 1 ,  

'lq - -  ~n-1 J O~ ' 

(i') 

(2') 

(3') 

x d O  = x ,n  (,); w - x , t ,  
C,p,X~ ' 

The p rob lem in such a formula t ion  can only be solved numer ica l ly .  An effect ive a lgor i thm for  the 
n u m e r i c a l  solution is p resen ted  below. The i tera t ion method of L. V. Kantorovich for solving nonlinear  
ope ra to r  equations [1] and the d i rec t  methods for  solving boundary value p rob l ems  for l inear  different ia l  
equations by reduct ion to Cauchy p rob l ems  [2] and by the fac tor iza t ion  method [3] a re  used in the a lgor i thm.  

2. M e t h o d  o f  t h e  N u m e r i c a l  S o l u t i o n  

Equations (1) a re  in tegra ted  by an impl ic i t  scheme of the fo rm 

d2u u - -  v u - -  ~ h ~ 
Q1 d - ~  q- Q2 = (1 + • • - -  D~(u), • -- (7) 

h, h w hw - -  h~ 

The r ight  side of this equation is  the der iva t ive  0u/0T (~, "r) e x p r e s s e d  in t e r m s  of the v and w d i s t r i -  
butions at the t imes  ~---h v and r - -hw,  r e spec t ive ly .  The p a r a m e t e r  ~ in (7) is fo rmal ly  taken as ze ro  in 
the f i r s t  t ime step.  The boundary value p rob lem for  the quas i l inear  equation (7) with the conditions (2), 
(3) is solved by the L. V. Kantorovich i tera t ion method [1J for  fixed 7, which r e su l t s  in the following l inear  
ope ra to r  L[u] in this ease :  

d~u ( du du o ) 
L [u] = QO - ~  .~_ QO + q~ d~ ~ + Q,(u - -  u o) - -  D~(u), (8) 

where  

du~ / i = 1, 2; 

1573 



dQx d2u ~ OQ~ OQ~ d~u ~ OQe , Ou 

0 

In each i terat ion the boundary value problem for the l inear  equation (8) with conditions (2)-(3) is 
solved by the method of reduction to a Cauchy problem [2] for  the system: 

dq)l d~l  

d% d@: 
d~ d~ 

d% d~3 
d~ d~ 

1 - ~ [ ( h ~ - "  l + 2 •  l §  Q a ) % - - Q a r  

(9) 

3 
_ Q~(% _ @ _ Q , ( %  _ nO) _ qo  ] 

B 

The fundamental sys tem of solutions of the sys tem (9) could be found numer ica l ly  in a s tandard man- 
ne r  and the a rb i t r a ry  constants could be found f rom the boundary and discontinuity conditions. The exponen- 
t ia l  e r r o r  accumulation during numer ica l  integrat ion of the sys tem (9) by Runge--Kutta type methods is 
aggravated in this case because the t ime steps hv and h w in the r ight  sides of (9) can be quite small  in 
strongly nonstat ionary problems,  in pulse heating say. The mentioned difficulty is successful ly  overcome 
by the following modification of the method of construct ing the general  solution. 

The fundamental sys tem of solutions of (9) is sought f rom the c lass  of piecewtse-continuous functions 
in [~0, ~n], which sat isfy the different ial  equation in the in tervals  (~0, ~l), @ ,  ~2) . . . . .  (~s, ~n), where 

the points ~j separat ing the l ayers  are  included in the set W = {~1, ~2 . . . . .  ~s}.  This  is done thus. Let 
us put r = u~ v), ~3(~0) = u~(~0, T) and let us se lect  values of r ~ ,  r r at the point ~0 such that 
the Wronskian (q1r162 would not be zero .  Let  us integrate  the sys tem (9) numer ica l ly  between ~0 and 
~1 bythe  Runge--Kuttamethod, where ~l is the f i rs t  point at which one of the functions Iq~l, 1~021, I(p31 becomes  
g rea te r  than some number  N. New initial data are  selected at the point ~l and the procedure  is duplicated 
for  the interval  @,  ~2), etc.  The general  solution of the sys tem (9) is const ructed thus, and the solution 
and its derivat ive can undergo discontinuit ies at the points ~i E W in the in terval  (~i, ~i +1). There  are  2s 
a rb i t r a ry  constants in conformity  with the number  of in tervals ,  which are  selected such that conditions 
(2'), (3')would be sat isf ied,  as would the conditions of continuity of u and 3u/3~ at the points ~k ~ ~j. The 
l inear  par t  of the sys tem of algebraic equations thus originating is solved by the faetorizat ion method. 

3. E x a m p l e  

The problem of the t empera tu re  distr ibution in a two- layered  heat shield is examined under pulsed 
heating conditions. It is assumed that the outer  l ayer  of the shield, which r ece ives  the thermal  load V(t), 
can be cooled because of mass  entrainment .  Depending on the heat exchange conditions on the shielded 
surface (substrate),  the quality of the heat shield is de termined  e i ther  by the maximal  value of the substrate  
t empera tu re  (a = 0) or by the quantity of absorbed heat thereon (~ = oo). Linear  re la t ionships  of ideal heat 
contact  are  taken as the discontinuity conditions for 3u/a~ on the l a y e r  contact  surfaces .  The outer  surface 
of the shield can be cooled by mass  ent ra inment  (for T = Ts) ,  radiat ion and heat conduction. The t he rmo-  
physical  p roper t i es  of the inner  l ayer ,  as well as the specific heat and density of the outer layer  are  assum-  
ed constant ,  and k 2 is a l inear  function of T.  Under the assumptions made the functions u(~, 7) and 77@) 
are  de termined  by the following equations and conditions: 

auj _ p .  O~ui ' 

S 
au (0, T) = S [% --  U (0, T)], a =  , 0 < S ~ < I ,  ( 1 - - s ) - ~  1 - - s  ": 

o n - -  __ k~(_~§ 1 - ~ au---~- + , u § = u - ;  f:~ - f ( ~  ___), 

u j (0 ,  ~) = u~  j = t ,  2; n (o) = 1, k:(u) = k~ + h (u - -  u,), 

for  u(1, ~) < u s 
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o r  

H e r e  

q('O = Au~( 1, "c)-~- Bkz[u(1  , T ) ] -  ! - - ~ i  . Ou (1, 'v);  dn = 0  

drl _ [ 
d'r o30 [ q (z) - -  Au 4 - -  Bk  s 1 ~_____.~I Ou 1, ] �9 - ~ (  T) , u(1,  T ) = u  s 

P I =  a2k-t ; Q I ~ O ;  
"~i61 

Q~= 

V. Ou 2 d~l ~ - -  ~1 J . 
o~ + - - 7  n - h ' 

p . _  a2k2(u.,) ( 1 - - ~ l ~ = ;  e a t  4 .  X , T ,  
" 7,~5~ \ ~1- -~1  / A = ~ V . - - ,  B =  , - V , q ( ' O = V ( t ) .  x , V .  ' 

The  e x t e r n a l  hea t  l oad  V(t) i s  d e l i v e r e d  as  a t r i a n g u l a r  p u l s e :  

I 
0, O : ~ z ~ - l ,  

q ( ' 0 = ,  2T, l > 2 z > 0 ,  

( 2 ( 1 - - * ) ,  2 > 2 , > 1 .  

The  t h e r m o p h y s i c a l  c h a r a c t e r i s t i c s  of the i n n e r  l a y e r  a r e  s e l e c t e d  in c o n f o r m i t y  wi th  the  p r o p e r t i e s  
of  t i t a n i u m  in the n u m e r i c a l  so lu t ion  of the  p r o b l e m .  The  v a l u e s  of the p a r a m e t e r s  r e f e r r i n g  to the sub -  
l i m i n g  l a y e r  c o r r e s p o n d  to the p r o p e r t i e s  of  s i l i c o n  c a r b i d e  and s o m e  t y p i c a l  h e a t - s h i e l d i n g  m a t e r i a l s  
[4-6]:  

x , = x 2 = 0 . 0 1  m; x1=0.005;  , ~ , = ; k 1 = 0 . 0 ! 8  kW/m'~ ..%,=0.01; 

~'2 = 2 , - - 2 " 5 '  10-6(T--T~); T* = 1000 ~ T s = 2800, 2100, 1400; 

Qs = 0.15.10 -7, 0.2.10 -7, 0,3" 10 -v kg/kW" see; p , =  9,=4500 kg/ma ; 

P2=3120; c , = c , _ , =  1,6 m 2"~ 01=0,6;  e =  1; 

V, = l0 b kW/rn2; t ,  = 30 sec. 

The  va lue  of V , ,  a s  w e l l  a s  the  d u r a t i o n  of the p u l s e  V(t) c o r r e s p o n d  in o r d e r  of  magn i tude  to the 
t h e r m a l  h e a t i n g  m o d e s  of v e h i c l e s  r e - e n t e r i n g  the dense  l a y e r s  of the  a t m o s p h e r e  [71. E x a m p l e s  of the 
r e s u l t s  ob t a ined  a r e  shown in F i g .  1 -2 .  C o m p u t a t i o n s  c o r r e s p o n d  to the v a r a t i o n s  s = 1 and s = 0 of the 
h e a t  e l i m i n a t i o n  cond i t i ons  on the s u b s t r a t e .  M o r e o v e r ,  the  v a l u e s  of T s and Q s  w e r e  v a r i a t e d ,  w h e r e  
T s = 2800~ and Qs  = 0 . 1 5 . 1 0  .7 k g / k W ,  s e c  w e r e  s e l e c t e d  a c c o r d i n g  to the p r o p e r t i e s  of  SiC2 [6], the t e r n -  
p e r a t u r e s  T s = 2100~ and T s = 1400~ a r e  t aken  a r b i t r a r i l y ,  and t h e i r  c o r r e s p o n d i n g  Qs  v a l u e s  a r e  c a l -  
c u l a t e d  f r o m  the e m p i r i c a l  r e l a t i o n s h i p  Q s T s  = c o n s t  which  i s  va l id  fo r  s o m e  m a t e r i a l s .  

T e m p e r a t u r e  p r o f i l e s  T ~ ,  t) a r e  p r e s e n t e d  in F i g .  l a  for  s o m e  t i m e s  t a t  T s = 2800~ The s o l i d  
l i n e s  c o r r e s p o n d  to the s = 1 c a s e ,  and the d a s h e s  to s = 0. The  t e m p e r a t u r e  p r o f i l e s  Tb~, t) for  T s = 1400~ 
a r e  shown in F i g .  l b .  The  l o c a t i o n s  ~2(t) of the o u t e r  s u r f a c e  of the s u b l i m i n g  l a y e r  a r e  no ted  for  s e v e r a l  
v a l u e s  of  t in th i s  s a m e  f i g u r e .  An e l e c t r o n i c  c o m p u t e r  c o m p u t a t i o n  of  v a r i a t i o n s  wi th  a high s u b l i m a t i o n  
r a t e  was  cut  off upon c o m p l i a n c e  with  the  cond i t ion  ~ ( t ) - -~  1 - 0.1 [R2(0)-~1]. The  s = 1 and s = 0 v e r s i o n s  
a r e  h e r e  deno t ed  e x a c t l y  a s  in F i g . .  l a .  P r e s e n t e d  in F i g .  2 a r e  t i m e  d e p e n d e n c e s  of  the d i m e n s i o n l e s s  
( r e f e r r e d  to V , )  hea t  f l uxes  q ( r ) ,  q k  (r) and  q~(r)  fo r  v a r i o u s  v a l u e s  of  T s and hea t  exchange  cond i t i ons  on 
the  s u b s t r a t e  (s = 0, s = 1). 

In d i s c u s s i n g  the r e s u l t s  o b t a i n e d ,  we note  tha t  the  m a i n  p u r p o s e  of  s o l v i n g  th i s  s p e c i f i c  p r o b l e m  i s  
to i l l u s t r a t e  the  g e n e r a l  f o r m u l a t i o n  (1 ) - (6 )o f  t h e s e  kind of p r o b l e m s  and t h e i r  n u m e r i c a l  so lu t ion  on e l e c -  
t r o n i c  c o m p u t e r s .  

A s  i s  s e e n  f r o m  F i g s .  1 -2 ,  the s e l e c t e d  hea t  s h i e l d  a p p e a r s  to be u n s a t i s f a c t o r y  for  the p u l s e  i n t e n -  
s i t y  m e n t i o n e d  V(t) .  F o r  s = 1 the hea t  f lux qix(r) which  p a s s e s  wi th in  the s h i e l d e d  s y s t e m  t u r n s  out to be 
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Fig. 1. Tempera ture  distribution in layers  of the sys tem for T s = 2800~ (a) and Ts  = 1400~ 
(b). Solid lines s = 1, dashes s = 0; T in ~ 
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Fig. 2. Time dependence of the heat fluxes 
on the substrate and the surface of the sub- 
liming layer.  

too great.  In th3 case of total insulation (s = 0) the 
substrate te ~ ~erature during the pulse duration takes 
on an inadmissibly high value. Evidently, the a rb i t ra r i ly  
chosen thickness of both layers  turns out to be too slight 
to assure  sa t is factory heat shielding of the substrate.  
It is important  to note that possibil i t ies are disclosed 
in the example considered,  which can be used in rea l  
heat shield sys tems  when optimal coatings are selected 
in some sense. One of the pa r ame te r s  subject to op- 
t imization is the pa rame te r  s(0 < s < 1). The values of 
s taken in the computations cor respond to the two ex-  
t reme idealized cases  of heat exchange on the surface 
x = 0 and can turn out to be necessa ry  only under special  
conditions. The relat ionship between the layer  thick- 
nesses  should also have a high value under nonstat ionary 
heating conditions. An examination of the heat shield- 
ing proper t ies  of thick subliming coatings with low values 
of T s (corresponding to high entrainment rates} is of 
interest .  

If the use of subliming coatings to shield vehicles 
r e - en te r ing  the atmosphere [7] is hence kept in mind, 
for example,  there a r i ses  a constraint  on the weight 
of the heat shield and the need to select  the optimal 
thickness of the subliming layer .  Concerning the in- 

fluence of the coating thermophysical  cha rac te r i s t i c s  (c, p, X), let us just note the following. As is seen 
f rom Figs.  la  and b, ve ry  large tempera ture  gradients can originate in the subliming layer .  If the coating 
mater ia l  possesses  no great  mechanical  strength,  this will be a constraint  on the selection of the heat 
conduction coefficients.  Let us still note here that, in par t icu lar ,  the maximal  value of the temperature  
gradient in the layers  is a functional of the pulse shape V(t) and a shield; optimal for one shape Vl(t), is 
not optimal for another V2(t) even if both pulses are charac te r i zed  by identical values of the maximal  inten- 
sity and total energy.  

As is seen, the optimality c r i te r ia  of the heat shield can inclUde any fac tors  depending on the purpose 
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and conditions of using the coating. Parametric computations of the temperature fields, analogous to those 
presented here, may turn out to be necessary in specific cases. 
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