TEMPERATURE FIELDS IN LAYERED MEDIA
WITH MOVING BOUNDARIES

V. V. Frolov UDC 536.425

The one-dimensional problem of nonlinear heat conduction in a multilayered system is consi-
dered taking account of mass entrainment, In the general case, the rate of mass entrainment
is assumed an arbitrary function of the time, the temperature, the heat flux, and the coordi-
nates of the moving boundaries of the system.

1. Formulation of the Problem

The temperature distribution in the layers Xj-1 < x < xj of a multilayer system is described by the
equations

oT; %) aT; )
0 G =5 (Mgl ) et 1< W
with the boundary conditions
d
Rl 760 S| =0, Rf6 1), Sl ) 0] <o (2)
ox Ox
the conditions of discontinuous T and 8T/9x at the points X;
. oT . 1
F@o [z‘,T(xji), T(xji) =0, i=12 1Lj<n—1 (3)
X
and the initial distribution
Tty ) =T (x), 1<j<n @)

It is assumed that the dynamics of mass entrainment (accretion) on the outer surface of the layer
Xp-1 <X < Xp is described by a differential equation of the form
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with the initial condition
X (g) = x5

In particular, (5) describes the motion of the boundary x = xy(t) in processes on the surface such as
sublimation, condensation, massentrainment during mechanical treatment, ete. Equations (1) and (5),
together with conditions (2)-(4) and (6), completely determine the temperature in the layers and the value
of xn(t) for t >t;. The boundary conditions (2) and the condition of thermal contact of the layers (3) are
nonlinear in the general case, the thermophysical properties of the layer material (¢, p, A) can depend on
x and T, The dependence of ¢ and A on T can exert considerable influence on the temperature distribution
in the neighborhood of the point x, (t).

It is convenient to reduce the problem under consideration to a problem with fixed boundaries by intro-
ducing the new independent variable
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for points of the outer layer.
Let us also introduce dimensionless variables by means of the formulas
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Here Tx, Xx, ty, Cx, 0, and Ax are the characteristic dimensions of the temperature, length, time,
specific heat,density, and heat conductivity, respectively, The relationships (1)-(6) become in the new
variables
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The problem in such a formulation can only be solved numerically. An effective algorithm for the
numerical solution is presented below. The iteration method of L. V. Kantorovich for solving nonlinear
operator equations [1] and the direct methods for solving boundary value problems for linear differential
equations by reduction to Cauchy problems [2] and by the factorization method [3] are used in the algorithm.

2., Method of the Numerical Solution

Equations (1) are integrated by an implicit scheme of the form

2,
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The right side of this equation is the derivative 8u/d7 (¢, 7) expressed in terms of the v and w distri-

butions at the times 7—hy and 7—hy,, respectively. The parameter % in (7) is formally taken as zero in

the first time step. The boundary value problem for the quasilinear equation (7) with the conditions (2),

(8) is solved by the L. V. Kantorovich iteration method [1] for fixed 7, which results in the following linear

operator L[u] in this case:
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In each iteration the boundary value problem for the linear equation (8) with conditions (2)-(3) is
solved by the method of reduction to a Cauchy problem [2] for the system:
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The fundamental system of solutions of the system (9) could be found numerically in a standard man-
ner and the arbitrary constants could be found from the boundary and discontinuity conditions. The exponen-
tial error accumulation during numerical integration of the system (9) by Runge—Kutta type methods is
aggravated in this case because the time steps hy and hy, in the right sides of (9) can be quite small in
strongly nonstationary problems, in pulse heating say. The mentioned difficulty is successfully overcome
by the following modification of the method of constructing the general solution.

The fundamental system of solutions of (9) is sought from the class of piecewise-continuous functions
in [£g, &,], which satisfy the differential equation in the intervals (£, g, ¢, D, ..., ¢8, ¢,), where

the points £; separating the layers are included in the set W= {t!, 2, ..., tS}. This is done thus. Let
us put @3(¢,) = u®Ey, 1), P36¢) = ul(é,, 7) and let us select values of ¢, @, ¥, ¥, at the point g such that
the Wronskian (¢ y,—4;¢,) would not be zero. Let us integrate the system (9) numerically between £, and

£! by the Runge—Kuttamethod, where &, is the first point at which one of the functions Igy|, lg,l, lg;l becomes
greater than some number N. New initial data are selected at the point £ ! and the procedure is duplicated
for the interval (¢!, £%), etc. The general solution of the system (9) is constructed thus, and the solution
and its derivative can undergo discontinuities at the points {1 € W in the interval (¢1, ! *1), There are 2s
arbitrary constants in conformity with the number of intervals, which are selected such that conditions

(2"), (3')would be satisfied, as would the conditions of continuity of w and du/8{ at the points (R =g, The
linear part of the system of algebraic equations thus originating is solved by the factorization method.

3. Example

The problem of the temperature distribution in a two-layered heat shield is examined under pulsed
heating conditions. It is assumed that the outer layer of the shield, which receives the thermal load Vi{t),
can be cooled because of mass entrainment. Depending on the heat exchange conditions on the shielded
surface (substrate), the quality of the heat shield is determined either by the maximal value of the substrate
temperature @ = 0) or by the quantity of absorbed heat thereon (& = ), Linear relationships of ideal heat
contact are taken as the discontinuity conditions for 9u/9¢ on the layer contact surfaces. The outer surface
of the shield can be cooled by mass entrainment (for T = Tg), radiation and heat conduction. The thermo-
physical properties of the inner layer, as well as the specific heat and density of the outer layer are assum-
ed constant, and k, is a linear function of T. Under the assumptions made the functions u(¢, 7) and n{r)
are determined by the following equations and conditions:
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The external heat load V(t) is delivered as a triangular pulse:

0, 0>1>1,
g(x) =1 21, 1>2t >0,

12(1—1), 22 21> L

The thermophysical characteristics of the inner layer are selected in conformity with the properties
of titanium in the numerical solution of the problem. The values of the parameters referring to the sub~
liming layer correspond to the properties of silicon carbide and some typical heat-shielding materials
[4-6]:

Xe =%, =0.01 m; x, =0.005 &,=>% =0.018 kw/m-°K, & =00l
hy=h,—2.5. 10T —T);, T,=1000°K; T, = 2800, 2100, 1400;
Q,=0.15-1077 0.2.1077, 0.3-1077 kg/kW-sec; p,= p,=4500 kg/m’;
py = 3120; ¢, =¢, =16 mK/&KW: ¢ =06 g=1,
V, = 10* kw/m? 1, =30 sec,

The value of Vi, as well as the duration of the pulse V(t) correspond in order of magnitude to the
thermal heating modes of vehicles re-entering the dense layers of the atmosphere [7]. Examples of the
results obtained are shown in Fig. 1-2. Computations correspond to the varations s =1 and s = 0 of the
heat elimination conditions on the substrate. Moreover, the values of Tg and Qg were variated, where
Tg = 2800°K and Qg = 0.15- 10~ kg/kW . sec were selected according to the properties of 8iC, [6], the tem-
peratures Tg = 2100°K and Tg = 1400°K are taken arbitrarily, and their corresponding Qg values are cal-
culated from the empirical relationship QgTg = const which is valid for some materials.

Temperature profiles T(X, t) are presented in Fig. 1la for some times t at Tg = 2800°K. The solid
lines correspond to the s = 1 case, and the dashes to s = 0. The temperature profiles T(x, t) for Tg = 1400°K
are shown in Fig. 1b. The locations X,(t) of the outer surface of the subliming layer are noted for several
values of t in this same figure. An electronic computer computation of variations with a high sublimation
rate was cut off upon compliance with the condition x{t)—%; = 0.1 [%,(0)~%;]. The s =1 and s = 0 versions
are here denoted exactly as in Fig. 1a. Presented in Fig. 2 are time dependences of the dimensionless

(referred to Vi) heat fluxes qlr), qi {r) and qi(f) for various values of T and heat exchange conditions on
the substrate (s =0, s = 1),

In discussing the results obtained, we note that the main purpose of solving this specific problem is
to illustrate the general formulation (1)-(6) of these kind of problems and their numerical solution on elec-
tronic computers.

As is seen from Figs. 1-2, the selected heat shield appears to be unsatisfactory for the pulse inten-
sity mentioned V{t). For s =1 the heat flux qi('r) which passes within the shielded system turns out to be
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Fig. 1. Temperature distribution in layers of the system for Tg = 2800°K (@) and Tg = 1400°K
(b). Solid lines s =1, dashes s = 0; T in °K.
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Fig. 2. Time dependence of the heat fluxes
on the substrate and the surface of the sub-
liming layer.

too great. In th: case of total insulation (s = 0) the
substrate te» perature during the pulse duration takes

on an inadmissibly high value, Evidently, the arbitrarily
chosen thickness of both layers turns out to be too slight
to assure satisfactory heat shielding of the substrate.

It is important to note that possibilities are disclosed

in the example considered, which can be used in real
heat shield systems when optimal coatings are selected
in some sense. One of the parameters subject to op~
timization is the parameter s(0 < s <1). The values of

s taken in the computations correspond to the two ex-
treme idealized cases of heat exchange on the surface

x = 0 and can turn out to be necessary only under special
conditions. The relationship between the layer thick-
nesses should also have a high value under nonstationary
heating conditions. An examination of the heat shield-
ing properties of thick subliming coatings with low values
of Tg (corresponding to high entrainment rates) is of
interest.

If the use of subliming coatings to shield vehicles
re-entering the atmosphere [7] is hence kept in mind,
for example, there arises a constraint on the weight
of the heat shield and the need to select the optimal
thickness of the subliming layer. Concerning the in-

fluence of the coating thermophysical characteristics (¢, p, M), let us just note the following. As is seen
from Figs. 1a and b, very large temperature gradients can originate in the subliming layer. If the coating
material possesses no great mechanical strength, this will be a constraint on the selection of the heat
conduction coefficients. Let us still note here that, in particular, the maximal value of the temperature
gradient in the layers is a functional of the pulse shape V(t) and a shield; optimal for one shape V,(t), is
not optimal for another V,(t) even if both pulses are characterized by identical values of the maximal inten-

sity and total energy.

As is seen, the optimality criteria of the heat shield can include any factors depending on the purpose
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and conditions of using the coating. Parametric computations of the temperature fields, analogous to those
presented here, may turn out to be necessary in specific cases.
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